Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. This is the second paper of a series aiming to determine the birth rates of supernovae (SNe) in the local Universe. Aims. We aimed to estimate the SN rates in the local Universe and fit the delay-time distribution of type Ia SNe (SNe Ia) to put constraints on their progenitor scenarios. Methods. We performed a Monte Carlo simulation to estimate volumetric rates using the nearby SN sample introduced in Paper I. The rate evolution of core-collapse (CC) SNe closely follows the evolution of the cosmic star formation history, while the rate evolution of SNe Ia involves the convolution of the cosmic star formation history and a two-component delay-time distribution including a power law and a Gaussian component. Results. The volumetric rates of type Ia, Ibc, and II SNe are derived as 0.325 ± 0.040−0.010+0.016, 0.160 ± 0.028−0.014+0.044, and 0.528 ± 0.051−0.013+0.162(in units of 10−4yr−1Mpc−3h703), respectively. The rate of CCSNe (0.688 ± 0.078−0.027+0.0206) is consistent with previous estimates, which trace the star formation history. Conversely, the newly derived local SN Ia rate is larger than existing results given at redshifts 0.01 < z < 0.1, favoring an increased rate from the Universe at z ∼ 0.1 to the local Universe at z < 0.01. A two-component model effectively reproduces the rate variation, with the power law component accounting for the rate evolution at larger redshifts and the Gaussian component with a delay time of 12.63 ± 0.38 Gyr accounting for the local rate evolution. This delayed component, with its exceptionally long delay time, suggests that the progenitors of these SNe Ia were formed around 1 Gyr after the birth of the Universe, which could only be explained by a double-degenerate progenitor scenario. Comparison with the Palomar Transient Factory (PTF) sample of SNe Ia at z = 0.073 and the morphology of their host galaxies, reveals that the increased SN Ia rate at z < 0.01 is primarily due to the SNe Ia of massive E and S0 galaxies with old stellar populations. Based on the above results, we estimate the Galactic SN rate as 3.08 ± 1.29 per century.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Context. This is the first paper in a series aiming to determine the fractions and birth rates of various types of supernovae (SNe) in the local Universe. Aims. In this paper, we aim to construct a complete sample of SNe in the nearby Universe and provide more precise measurements of subtype fractions. Methods. We carefully selected our SN sample at a distance of less than 40 Mpc mainly from wide-field surveys conducted over the years from 2016 to 2023. Results. The sample contains a total of 211 SNe, including 109 SNe II, 69 SNe Ia, and 33 SNe Ibc. With the aid of sufficient spectra, we obtained relatively accurate subtype classifications for all SNe in this sample. After corrections for the Malmquist bias, this volumelimited sample yielded fractions of SNe Ia, SNe Ibc, and SNe II of 30.4−11.5+3.7%, 16.3−7.4+3.7%, and 53.3−18.7+9.5%, respectively. In the SN Ia sample, the fraction of the 91T-like subtype becomes relatively low (~5.4%), while that of the 02cx-like subtype shows a moderate increase (~6.8%). In the SN Ibc sample, we find significant fractions of broadlined SNe Ic (~18.0%) and SNe Ibn (~8.8%). The fraction of the 87A-like subtype was determined to be ~2.3%, indicating rare explosions from blue supergiant stars. We find that SNe Ia show a double peak number distribution in S0- and Sc-type host galaxies, which may serve as straightforward evidence for the presence of “prompt” and “delayed” progenitor components that give rise to SN Ia explosions. Several subtypes of SNe such as 02cx-like SNe Ia, broadlined SNe Ic, and SNe IIn (and perhaps SNe Ibn) are found to occur preferentially in less massive spiral galaxies (i.e., with stellar mass <0.5×1010Mʘ), thus favoring their associations with young stellar progenitors. Moreover, the 02cx-like subtype shows a trend of exploding in the outer skirt of their hosts, which is suggestive of metal-poor progenitors.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract We present a high-cadence short term photometric and spectroscopic monitoring campaign of a type Ibn SN 2019wep, which is one of the rare SN Ibn after SNe 2010al and 2019uo to display signatures of flash ionization (He ii , C iii , N iii ). We compare the decline rates and rise time of SN 2019wep with other SNe Ibn and fast transients. The post-peak decline in all bands (0.1 mag day −1 ) are consistent with SNe Ibn but less than the fast transients. On the other hand, the Δ m 15 values are slightly lower than the average values for SNe Ibn but consistent with the fast transients. The rise time is typically shorter than SNe Ibn but longer than fast transients. SN 2019wep lies at the fainter end of SNe Ibn but possesses an average luminosity among the fast transients sample. The peculiar color evolution places it between SNe Ib and the most extreme SNe Ibn. The bolometric light-curve modeling shows resemblance with SN 2019uo with ejecta masses consistent with SNe Ib. SN 2019wep belongs to the P cygni subclass of SNe Ibn and shows faster evolution in line velocities as compared to the emission subclass. The post-maximum spectra show close resemblance with ASASSN-15ed hinting it to be of SN Ib nature. The low He i CSM velocities and residual H α further justifies it and provide evidence of an intermittent progenitor between Wolf-Rayet and LBV stars.more » « less
An official website of the United States government
